XXVI.—On a Group of Linear Differential Equations of the 2nd Order, including Professor Chrystal's Seiche-equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

INVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.

متن کامل

approximately n-order linear differential equations

we prove the generalized hyers--ulam stability  of n--th order linear differential equation of the form $y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x)$, with condition that there exists a non--zero solution of corresponding homogeneous equation. our main results extend and improve the corresponding results obtained by many authors.

متن کامل

A new approach for solving the first-order linear matrix differential equations

Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Royal Society of Edinburgh

سال: 1906

ISSN: 0080-4568,2053-5945

DOI: 10.1017/s0080456800035535